Теория атома водорода по Бору Оптические квантовые генераторы (лазеры) Металлы, диэлектрики и полупроводники

Лекции и задачи по физике Колебания и волны, оптическая и ядерная физика

Линейный гармонический осциллятор в квантовой механике

Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и математический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна

  (222.1)

где w0 — собственная частота колебаний осциллятора, т — масса частицы. Зависимость (222.1) имеет вид параболы (рис. 300), т. е. «потенциальная яма» в данном случае является параболической.

Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е (см. рис. 16). В точках с координатами ±xmax полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (–xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенциальной яме» с координатами – xmax <х< xmax «без права выхода» из нее.

Гармонический осциллятор в квантовой механике — квантовый осциллятор — описывается уравнением Шредингера (217.5), учитывающим выражение (222.1) для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются уравнением Шредингера вида

  (222.2)

где Е — полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что уравнение (222.2) решается только при собственных значениях энергии

 (222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (см. § 220), минимальным значением энергии E0=1/2ћw0. Существование минимальной энергии — она называется энергией нулевых колебаний — является типичной для квантовых систем и представляет собой прямое следствие соотношения неопределенностей.

Наличие нулевых колебаний означает, что частица не может находиться на дне «потенциальной ямы», причем этот вывод не зависит от ее формы. В самом деле, «падение на дно ямы» связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопределенность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в «потенциальной яме».

Вывод о наличии энергии нулевых колебаний квантового осциллятора противоречит выводам классической теории, согласно которой наименьшая энергия, которую может иметь осциллятор, равна нулю (соответствует покоящейся в положении равновесия частице). Например, классическая физика приводит к выводу, что при Т=0 энергия колебательного движения атомов кристалла должна обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное колебаниями атомов. Однако эксперимент показывает, что интенсивность рассеяния света при понижении температуры не равна нулю, а стремится к некоторому предельному значению, указывающему на то, что при Т®0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.

Из формулы (222.3) также следует, что уровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (рис. 300), а именно расстояние между соседними энергетическими уровнями равно ћw0, причем минимальное значение энергии E0=1/2ћw0.

Строгое решение задачи о квантовом осцилляторе приводит еще к одному значительному отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области |x|£xmax (см. рис. 16), в то время как с классической точки зрения она не может выйти за пределы области (–xmax, +xmax). Таким образом, имеется отличная от нуля вероятность обнаружить частицу в той области, которая является классически запрещенной. Этот результат (без его вывода) демонстрируется на рис. 301, где приводится квантовая плотность вероятности w обнаружения осциллятора для состояния п=1. Из рисунка следует, что для квантового осциллятора действительно плотность вероятности w имеет конечные значения за пределами классически дозволенной области |x|£xmax, т.е. имеется конечная (но небольшая) вероятность обнаружить частицу в области за пределами «потенциальной ямы». Существование отличных от нуля значений w за пределами «потенциальной ямы» объясняется возможностью прохождения микрочастиц сквозь потенциальный барьер (см. § 221).

4.9. Гироскоп. Гироскопический эффект

 Гироскопом (или волчком) называют массивное симметричное тело, вращающееся с большой скоростью вокруг оси симметрии (рис.5.5).


706.gif

 Момент количества движения гироскопа совпадает с его осью вращения. 

 Для того, чтобы изменить направление в пространстве оси гироскопа, т.е. направление вектора 1254.gifнеобходимо в соответствие основным уравнением динамики вращательного движения 1266.gifподействовать на него моментом внешних сил 1270.gif. Пусть это пара сил 1272.gifсоздающая вращающий момент относительно оси 1273.gif, лежащей в плоскости чертежа перпендикулярно оси ОО (вращение вокруг 1273.gif).

 При этом наблюдается следующее явление, получившее название гироскопического эффекта:

 под действием пары сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг оси 1273.gif, ось гироскопа поворачивается вокруг прямой 1274.gifперпендикулярно к этим осям (т.е. к ОО и 1273.gif).

 «Противоестественное» на первый взгляд поведение гироскопа оказывается, как легко видеть, полностью соответствует законам динамики вращательного движения, т.е. в конечном счете, законам Ньютона.

1. Закономерности альфа-, бета-, гамма- излучений атомных ядер. Закон радиоактивного распада. 2. Классификация элементарных частиц и фундаментальные взаимодействия. 3. Идеальный газ. Уравнение молекулярно-кинетической теории газов. Уравнение состояния идеального газа. 4. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул. Внутренняя энергия идеального газа. 5. Первое начало термодинамики. Изопроцессы. Адиабатический процесс. 6. Обратимые и необратимые процессы. Круговой процесс. Цикл Карно и его КПД для идеального газа. 7. Второе начало термодинамики. Энтропия. Статистическое толкование второго начала термодинамики
Колебания и волны, оптическая и ядерная физика